Multiphoton optical image guided spectroscopy method for characterization of collagen-based materials modified by glycation.

نویسندگان

  • Yu-Jer Hwang
  • Joseph Granelli
  • Julia G Lyubovitsky
چکیده

The cross-linking with reducing sugars, known as glycation, is used to increase stiffness and strength of tissues and artificial collagen-based scaffolds. Nondestructive characterization methods that report on the structures within these materials could clarify the effects of glycation. For doing this nondestructive evaluation, we employed an in situ one-photon fluorescence as well as multiphoton microscopy method that combined two-photon fluorescence and second harmonic generation signals. We incubated collagen hydrogels with glyceraldehyde, ribose, and glucose and observed an increase in the in situ fluorescence and structural alterations within the materials during the course of glycation. The two-photon fluorescence emission maximum was observed at about 460 nm. The fluorescence emission in the one-photon excitation experiment (λ(ex) = 360 nm) was broad with peaks centered at 445 and 460 nm. The 460 nm emission component subsequently became dominant during the course of glycation with glyceraldehyde. For the ribose, in addition to the 460 nm peak, the 445 nm component persisted. The glucose glycated hydrogels exhibited broad fluorescence that did not increase significantly even after 6 weeks. As determined from measuring the fluorescence intensity at the 460 nm maximum, glycation with glyceraldehyde was faster compared to ribose and generated stronger fluorescence signals. Upon excitation of glycated samples with 330 nm light, different emission peaks were observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Study of Collagen Immobilization on a Novel Nanocomposite to Enhance Cell Adhesion and Growth

Background: Surface properties of a biomaterial could be critical in determining biomaterial’s biocompatibility due to the fact that the first interactions between the biological environment and artificial materials are most likely occurred at material’s surface. In this study, the surface properties of a new nanocomposite (NC) polymeric material were modified by combining plasma treatment and...

متن کامل

Synthesis and Characterization of ZnO Nanostructures Grown via a Novel Atmospheric Pressure Solution Evaporation Method

In this study, a novel method called “atmospheric pressure solution evaporation (APSE)” wasdeveloped for growing of Zinc Oxide (ZnO) nanostructures on Al2O3 surface. Zinc acetate dihydrate,Polyvinyl Pyrrolidone, and deionized water were used as precursor, capping, and solvent, respectively.The growth of ZnO nanostructures from evaporated solution was performed at three temperatures of300, 400, ...

متن کامل

Synthesis and Characterization of Nano-Sized Hexagonal and Spherical Nanoparticles of Zinc Oxide

ZnO plays an important role in many semiconductors technological aspects.  Here,  direct  precipitation  method  was  employed  for  the synthesis of nano-sized hexagonal ZnO particles, which is based on chemical  reactions between  raw materials used  in  the  experiment. ZnO  nanoparticles  were  synthesized  by  calcinations  of  the  ZnO precursor precipitates  at 250  ˚C  for 3hours. ...

متن کامل

INVESTIGATION ON GROWTH AND CHARACTERIZATION OF NONLINEAR OPTICAL DICHLORO-DIGLYCINE ZINC II SINGLE CRYSTAL

The study of amino acid based nonlinear optical (NLO) materials with optimum physical properties is an important area due to their practical applications such as optical communication, optical computing, optical information processing, optical disk data storage, laser fusion reactions, laser remote sensing, colour display, medical diagnostics, etc. Also, microelectronic industries require cryst...

متن کامل

Structural and Optical Characterization of ZnO-Graphene Nanocomposite Quantum Dots

In this research, zinc oxide quantum dots and graphene nanocomposites were synthesized via two different methods; In the first (direct) method, ZnO-graphene Nanocomposites were made mixing the synthesized zinc oxide and graphene. In the second (indirect) method, zinc nitrate, graphene, and sodium hydroxide were used to made ZnO-graphene Nanocomposites. XRD, FTIR and Raman spectroscopy analyses ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 83 1  شماره 

صفحات  -

تاریخ انتشار 2011